- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Xiang, Haotian (2)
-
Chen, Jiayu (1)
-
Di, Xuan (1)
-
Dou, Fei (1)
-
Lu, Qin (1)
-
Mo, Zhaobin (1)
-
Phillips, Bradley G (1)
-
Pitafi, Zaid Farooq (1)
-
Song, WenZhan (1)
-
Song, Yingjian (1)
-
Yang, He (1)
-
Zeng, Zixuan (1)
-
Zhang, Xiang (1)
-
Zhang, Yida (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In-bed postures offer valuable information about an individual's sleep quality and overall health conditions, particularly for patients with sleep apnea. However, current in-bed posture classification systems lack privacy-friendly and easy-to-install options. Furthermore, existing solutions do not consider variations between patients and are typically trained only once, neglecting the utilization of time consistency and unlabeled data from new patients. To address these limitations, this paper builds on a seismic sensor to introduce a novel sleep posture framework, which comprises two main components, namely, the Multi-Granularity Supervised Contrastive Learning (MGSCL) module and the ensemble Online Adaptation (oa) module. Unlike most existing contrastive learning frameworks that operate at the sample level, MGSCL leverages multi-granular information, operating not only at the sample level but also at the group level. The oa module enables the model to adapt to new patient data while ensuring time consistency in sleep posture predictions. Additionally, it quantifies model uncertainty to generate weighted predictions, further enhancing performance. Evaluated on a dataset of 100 patients collected at a clinical research center, MGSCLoa achieved an average accuracy of 91.67% and an average F1 score of 91.53% with only 40 seconds of labeled data per posture. In a Phase 2 evaluation with 11 participants over 13 nights in home settings, the framework reached an average accuracy of 85.37% and a weighted F1 score of 83.59% using just 3 minutes of labeled data per common posture for each participant. These results underscore the potential of seismic sensor-based in-bed posture classification for assessing sleep quality and related health conditions.more » « lessFree, publicly-accessible full text available June 9, 2026
-
Mo, Zhaobin; Xiang, Haotian; Di, Xuan (, ACM Transactions on Spatial Algorithms and Systems)The COVID-19 pandemic has dramatically transformed human mobility patterns. Therefore, human mobility prediction for the “new normal” is crucial to infrastructure redesign, emergency management, and urban planning post the pandemic. This paper aims to predict people’s number of visits to various locations in New York City using COVID and mobility data in the past two years. To quantitatively model the impact of COVID cases on human mobility patterns and predict mobility patterns across the pandemic period, this paper develops a model CCAAT-GCN (Cross- andContext-Attention based Spatial-TemporalGraphConvolutionalNetworks). The proposed model is validated using SafeGraph data in New York City from August 2020 to April 2022. A rich set of baselines are performed to demonstrate the performance of our proposed model. Results demonstrate the superior performance of our proposed method. Also, the attention matrix learned by our model exhibits a strong alignment with the COVID-19 situation and the points of interest within the geographic region. This alignment suggests that the model effectively captures the intricate relationships between COVID-19 case rates and human mobility patterns. The developed model and findings can offer insights into the mobility pattern prediction for future disruptive events and pandemics, so as to assist with emergency preparedness for planners, decision-makers and policymakers.more » « less
An official website of the United States government
